libspe: A Dynamic System Performance Analysis
Library

Joel Reardon

January 17, 2009

Abstract

This document consists of the 1ibspe section of my thesis, along with
more detailed information on the pragmatics of its use.

1 Introduction

This paper describes 1ibspe: a dynamic system performance analysis library.
It allows for static collecting of timing information and the ability to register
any number of observees: a reference to some object that is being monitored.
Each observee belongs to a family; for example each data structure type can
be a family and observees in that family are instantiations of that type. Each
family has a method that is invoked for observations, and so when an observation
is made on that object, libspe invokes the corresponding method passing the
observee. To allow for dynamic changes in the observation methods, we maintain
a dictionary that maps families to their observation methods, and allow this to
be easily modified at runtime.

The source code for libspe, written in C, is released as a free and open-
source project under the BSD license.

2 Overview

2.1 Static Data Collection

A set of static data collection variables are defined at compile time. These
correspond to regions of the source code under timing scrutiny, a particular line
of code whose execution period is being computed, or any particular variable
whose value the operator has decided to record. Each variable is collected under
both a family name and a subindex. For example, each buffer has a unique
pointer value in memory, and so buffer sizes were recorded under the buffer size
family subindexed by the buffer’s memory address. The subindex value of zero
is used to store either generic, amalgamated, or nonindexed variables.

The memory allocated to store the results during execution is currently con-
figured at compile time. Each variable can either be a linked list of unbounded
size, or a fixed-size array. If a variable uses a fixed-size array, then observations
are collected by accepting new measurements with a decreasing probability in



order to collect a random set of data distributed uniformly on a stream of un-
known length. Our Tor node used a fixed-sized array of 1024 observations per
non-zero subindex and 4096 observations for the zero index.

2.2 Interaction Socket

When initialized, libspe is provided the port number for a local interaction
socket. A thread is spawned that accepts localhost connections on that port.
All runtime aspects of libspe are controlled through this socket. Foremost,
static data collection can be toggled, and the cumulative distribution func-
tions for all the static timing variables previously collected can be output to
a file. Since observations on data structures are initially disabled, the interac-
tion socket allows the listing of all the observees currently being managed and
the enabling or disabling of observation for specific observees or entire families,
along with the filenames used for results. Finally, the callback library used to
collect data during an experiment can be changed with a command specifying
the new callback library.

2.3 Observers

Registration of candidate data structures for observation is made at compile
time. Each object registers itself with the spe instance when in use, and dereg-
isters itself from the spe instance when it is no longer being used. Tor was
modified to register objects in their constructors and deregister in their de-
structors. While generic observations are made in discrete intervals, spe can
also be forced to make observations at particular places in the program (e.g.,
observing on a socket before writing or observing on a buffer before an inser-
tion). Each observee is assumed to be in an off state when the program begins
execution; 1ibspe will not generate any data for observers that are off, even if
they force an observeration. At run-time, through the interaction socket, the
operator can turn observees on to generate data, either individually or by fam-
ily. Each enabled observer is given an open file for outputting data, and an
observation time period.

Static state is maintained between observations. Each observee has an as-
sociated state object that can be used in the observation method; the state is
passed alongside the observee when making observations. When an observee is
registered, a special invocation of the observer method indicating initialization
is performed so that state data can be initialized. Similarly, when an observer
is disabled, another special cleanup invocation is performed to signal that the
observer must free allocated memory. Thread safety is assured by having each
observee acquire a lock before before calling the observation method and release
it after the observations method returns.

2.4 Dynamic Callbacks

Dynamic callbacks are used to collect data from data structures at runtime.
Since the data the operator may wish to collect may change as the program
executes and collected data is examined, libspe allows dynamically loaded
libraries of observation routines to obviate restarting the instrumented program
due to a change in experiment.



The set of callback families must be known prior to execution. Each observee
that registers specifies its family (i.e. data structure type) upon registration.
Each family is associated with a specific observation method that is invoked
in the library. Initially, there is no library and so all families are associated
with a null function. When the interaction socket loads a new library, each
family’s associated function symbol is loaded from the new library. Henceforth,
all observations will now invoke this new method.

As an example, suppose the operator wants to report the size of a buffer over
time. They compile a library with an observation function that takes a buffer as
a parameter, and writes its size to a file. The operator connects to the interaction
socket, informs libspe of its observation library, and enables observations on
all buffers. Suppose after determining the sizes of every buffer, they find one
buffer which they wish to explore in more detail. The operator then writes a
new method to report the contents of the buffer, changes in sizes over time, the
memory allocated for the buffer, etc. This new method is compiled into a new
libray, and libspe is told (via the interaction socket) to use this new library
for experimental callbacks henceforth. The operator then enables observations
on the single buffer of interest, and 1ibspe will use their new method to report
more information.

2.5 System Interface

The system interface for 1ibspe contains two components: the static API used
during the instrumentation of the program, and the runtime interface used to
control experimentation while executing.

The instrumented program initializes libspe with initialize(), which
configures data set sizes and the local port used for the interaction socket. Data
structures that are to be inspected are registered with the register () method.
The functions start_timing() and stop_timing() are placed around code to
respectively start and stop the timer. The elapsed time is computed when
stopping the clock, and is stored locally using the data_point() function. To
store a single piece of data, such as the current size of the buffer, one can call
data_point () directly. Finally, period() is used in lieu of start_timing()
and stop_timing() to measure the time elapsed before the program counter
returns to the same line of code. It computes the difference in time between
now and the time it stores locally. It replaces the stored time with the current
time, and adds the computed difference using data_point (). Since there is no
initially stored value, the first call is ignored but all subsequent calls compute
the period properly. Like all the other methods, period() is indexed by both a
family name and a subindex, allowing for expressive period calculations based
on the current system logic.

At runtime, an operator can connect to libspe through the interaction
socket to control its behaviour. The listening thread will spawn a new thread
upon accepting a connection, and the new thread will respond to operator de-
mands sequentially. As mentioned, these include changing the callback libraries,
enabling observation, and outputting the static data that has been collected. Re-
sources are shared between the libspe static program interface and its dynamic
socket interface, and all data access and function calls are threadsafe.

The file main.c shows an example of an instrumented program.



3 Future Work

e Variable Interaction: Allow the operator to set a variable by name through
the interaction socket to a particular value, and allow the compiled pro-
gram to retrieve these values while its running. Toggles would allow the
control of logic, so the operator could decide the outcome of a decision
block. Right now the hackish way to accomplish this is to have a special
toggles_t that contains the variables, and write an experimental callback
that sets the values to the desired value, load the new library and enable
observations for the toggles_t one time only.

e Interaction GUI: The simple prompt with four-letter commands was clearly
just a way to get it done. Much better to have a more interactive GUI
that shows all the observees and allows selection of libraries, enabling of
observees, and viewing of the resulting data with ease.

e spe_observer_enable: Use the interest variable to discriminate against
observees that are inactive. Currently its commented out, needs more of
a configuration.

e Use a configuration file to load configuration options.



